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Abstract—Shock diffraction occurs when a moving normal shock 
wave undergoes a sudden area of expansion. Capturing the blast 
wave is very important as it has fracturing effect on solid bodies and 
it creates small-scale debris and dust. Blast waves are generated 
from detonations and it involves high-pressure-ratio shock waves 
moving at high velocity. This paper presents a numerical simulation 
of solving Euler equations to capture unsteady shock wave diffraction 
over 90° step corner. The contact surface, shock and expansion 
waves are very well produced and validated. The created moving 
shock wave is made to be diffracted over 30°, 60°, 90°, 120°, 150° 
steps to run for a short interval of time of unsteady flow at different 
shock Mach numbers (Ms=1.65 to 3.0). The changes of flow 
characteristics with the increase of shock Mach number are reported 
here. Euler computations produce flow separation near to the 
diffracted edge. A good resolution of the perturbed region is 
identified behind the diffracted shock wave. The secondary shock, 
vortex core, slipstream, terminator are very well produced. 
Threshold limiting value of acoustic expansion wave to flow into 
upstream is also identified. 
 
Keywords: Shock diffraction, expansion wave, supersonic flow, blast 
wave, Euler computations, slipstream, secondary shock, vortex core. 

1. INTRODUCTION 

Shock diffraction at sharp edges is an important feature in 
many gas dynamic problems of interest and is even significant 
for the prediction of blast wave’s interaction with structures in 
defense research. Detonations or explosions create blast waves 
including high - pressure ratio shock waves moving at high 
speeds. Capturing the blast wave is necessary as it is has 
fracturing effect on solid bodies. The blast wave front 
resulting from an explosion is typically spherical, but small 
segments of the shock wave in the far field can be modeled as 
planar to study shock diffraction over obstacles. In these 
problems, obstacles include mostly manmade structures and 
vehicles. Such targets can be ideally taken as primitive 
geometric shapes such as rectangles, wedges and circles. 

Here, the main focus is to study the perturbed region behind 
the diffracted shock wave. By taking the help of the literature 

survey, it is found that the Sod problem [1] is an essentially 
one-dimensional flow discontinuity problem which provides a 
good test of a compressible code's ability to capture moving 
shocks and contact discontinuities with a small number of 
zones and to produce the correct density profile. Wide variety 
of flow characteristics occur in the perturbed region behind the 
diffracting shock and have been described in detail [2]. A new 
flow peculiarity at the corner had been introduced due to 
Mach numbers in the range of 1.6-1.87 and it was supposed to 
be the tail of the Prandtl-Meyer fan called terminator [2]. A 
number of experimental results for shock diffraction over a 
convex corner have been published. Numerical results are in 
abundance [3] likewise. With the formation of a series of small 
vortices due to the numerical solution of the compressible 
Euler equations, the shear layer becomes unstable and this had 
not been observed in shock tube experiment [4]. They 
explored the use of the Navier-Stokes equations and found that 
additional dissipation by the application of a turbulence model 
was needed to imitate the experimental results. Analytical 
investigations have been carried out by skews [5] for studying 
the point of intersection between the incident wave and the 
reflected acoustic wave and it has been extensively studied 
using Whitman's theory [7]. 

The fact that flux-vector splitting scheme is based on 
characteristic decomposition of the convective fluxes; has 
been proposed by Van Leer [8]. It performs quite well in the 
case of Euler equations. Roe [9] has performed a comparative 
study of the upwind schemes developed earlier, classified into 
flux-vector and flux-difference splitting, and has pointed out 
their successes and failures. A new flux splitting formula has 
been established by Liou and Steffen [10], namely AUSM. 
The AUSM resulted in correct solution in the blunt body 
problem without difficulty in every test in a wide variation of 
flow condition and grids, where the Roe splitting failed. Liou 
[11] again introduced modified form of AUSM i.e. AUSM+. 
In addition to the described accuracy and reliability, the 
AUSM+ requires little computational effort only linearly 
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proportional to the number of equation considered. A study by 
Meadows et al. [12] used a second order upwind finite volume 
scheme for solving the two-dimensional Euler equations. 
Shocks were captured using this method in spite of any 
numerical oscillations. In the 18th International Symposium 
on shock waves, Takayama & Inoue [13] clearly explained 
that numerical simulations can represent very well the 
diffracting shock wave, expansion waves and the main vortex. 
Several investigations by Hanel et al. [15], carried out with the 
Navier-Stokes equations divulged that splitting errors in the 
momentum and the energy equations smear out the boundary 
layers and also lead to inaccurate stagnation and wall 
temperatures. Hanel and Schwane [16] suggested a 
modification to the momentum flux in the direction normal to 
the boundary layer.  

Origin of compression attached to the shock front was 
unknown and theories at that time predicted a wave with 
perfect anti symmetry (Ribner, [17]). Experiments and 
numerical results have shown that the shock compresses an 
initially circular vortex into an elliptical one. The acoustic 
pressure field formed due to shock-vortex interaction has been 
predicted by Ribner [18]. This shows good agreement with 
experiments of Dosanjh and Weeks [19] except very close to 
the shock front. Ellzey et al. [20] explained the significance of 
shock distortion in forming acoustic wave for a strong 
interaction. 

Present unsteady flow simulation is carried over 30° -150° 
step angles in the multiple of 30° with shock Mach numbers 
(MS=1.65,2.0,2.5,3.0). 

Proper understanding of the flow physics and building precise 
numerical models have become necessary. Most previous 
studies commonly considered a single sharp edge connecting 
two plane surfaces, as shown in Fig. 1 along with a plane 
approach shock. 

A number of flow features can be noted from a variety of    
experimental studies done before. At relatively small 
diffraction angles(less than 20°, Fig. 1a) the flow remains 
attached after crossing the diffraction edge. A secondary 
rearward-faced shock wave (stagnation wave) is formed which 
matches the expanded flow downstream to the flow behind the 
diffracted shock wave. At Fig. 1b, flow separation is geared up 
by growing strength of secondary wave at a large diffraction 
angle. The flow separation position moves nearby the 
diffraction edge as we increase the angle in Fig. 1c. Thus the 
separated flows at smaller diffraction angles are expected to be 
viscosity-dependent. We would hope that Euler computations 
would provide a reasonable flow model even after reaching 
“sharp-edged” separation. 

Figure 1c depicts the incident plane wave (A), the diffracted 
wave (B) and the front of the reflected expansion wave (C) 
which travels back into the post-shock region and is the 

demarcation between uniform and non-uniform flow. Here, the 
acoustic wave does not penetrate upstream of diffraction edge 
because the induced post-shock flow is supersonic,  and the 
upstream part (C) is leading Mach line of a Prandtl-Meyer 
expansion wave. The gas is accelerated and turned parallel to 
the separation streamline (D). The rearward-facing shock 
wave (E) shocks the flow which is matching the expansion to 
post-diffraction shock. 

The slipstream rolls up into a vortex (F) and thereby interacts 
with the wave. The part of flow processed by diffracting shock 
from that processed by incident wave is separated by another 
observable phenomenon, which is called the contact 
surface/vortex sheet (G). An overshoot is first being developed 
with a reflexive contour near diffraction wall for relatively 
strong shock waves (Fig. 1c). In some cases, the necessary 
deceleration of the reverse flow is achieved by the third shock 
(H). 

 

Figure 1a-c. Schematic of diffraction at a convex edge, given by 
Hillier [3]. a. Small diffraction angle with attached flow, b. large 
angle with separation downstream of the edge, c. diffraction at a 
90° edge. In each case the post incident shock flow is supersonic 

so that there is no upstream influence. 

2. METHODOLOGY 

The moving shock wave produced, is made to move over 90° 
step corner. 

The governing Euler equations describe conservation laws for 
mass, momentum. Those relations along with ideal gas state 
and internal energy equations for a compressible flow are 
shown below respectively. 

𝜕𝜌

𝜕𝑡
+ ∇. (𝜌𝑉) = 0                                       (1) 
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𝜕(𝜌𝑢)

𝜕𝑡
+ ∇. (𝜌𝑢𝑉) = −

𝜕𝑝

𝜕𝑥
                       (2) 

𝜕(𝜌𝑣)

𝜕𝑡
+ ∇. (𝜌𝑣𝑉) = −

𝜕𝑝

𝜕𝑦
                        (3) 

𝑝 = 𝜌𝑅𝑇                                                         (4) 

𝜌𝑒 =
𝑝

𝛾 − 1
                                                    (5) 

 

In case of moving normal shock waves, gas behind the wave is 
being dragged by the wave. All the velocities are calculated 
relative to the shock propagation. 

 

 
Figure 2. Schematic of stationary and moving shock waves. 

 
W=Shock wave velocity, 

up=Mass motion of induced gas behind moving shock, 

p2=Upstream pressure, 

p1=Downstream pressure. 

A. Numerical details of Shockwave diffraction experiment. 
 

 
Figure 3. Computational Flow Domain. 

Final computations are performed for the spatial domain 
0≤𝑥≤8L shown in Fig. 3 of 90° step corner. Very fine meshing 
with about 200000 elements is considered. The two-
dimensional time-dependent Euler equations coupled with the 
equation of state (4) and internal energy (5) are numerically 
solved. The Euler equations are solved by the implicit finite 
volume formulation using structured quadrilateral cells that 
covers the whole computational domain. The solver contains 
upwind biased schemes for calculating the AUSM flux and the 
scheme is second-order accurate in time and space. Obtained 
density contours are listed in Fig.4 and Fig.5.  

3.  RESULTS AND DISCUSSION 

The position of the shockwave is also calculated with a simple 
mathematical statement and a time size is maintained. As the 
shockwave is followed by contact discontinuity, a certain time 
size has to be maintained so that contact discontinuity must 
not reach near to the step corner, thus the flow characteristics 
will be not be disturbed behind the diffracted shockwave. 

Computations have been performed for a perfect gas with 
γ=1.4 on 200000 mesh elements with incident shock Mach 
numbers ranging from 1.65-3.0 over a 90° step corner at first. 
Then it has been extended to other step angles. After a time 
size is reached, computations are terminated so that the exact 
location of the shock wave is captured and hence it lay to be 
stationary at that location. This time size is maintained to 
make the contact discontinuity not to reach near to the step 
corner. A regular shock reflection occurs followed by Mach-
reflection after the diffraction of the incident shock wave. 
Thus the reflected wave is propagating slightly upstream of 
the edge for these subsonic post-shock flows which can be 
observed from the density contours shown in subsequent 
figures. The angle made by terminator and slipstream are 
found to be decreasing through the density contours upon an 
increase in values of MS. A supersonic flow can be clearly 
visible behind secondary shock through Mach number 
contours. It is enclosed between the Prandtl-Meyer fan 
expansion lines referred as terminator, slipstream with the 
secondary shock. 

The diffracted shock wave, reflected acoustic 
waves/expansion waves, slipstream, vortex, contact 
surface/vortex sheet, secondary shocks are all captured with 
sufficient mesh refinement for 30°, 60°, 90°, 120° and 150° 
steps with Mach No.s-1.65, 2, 2.5, 3. These are all validated 
with existing experimental & numerical well established 
results. Also some grid independence test was carried out. 
Figure 4 and figure 5 represents the shadowgraph images for 
60°, 90°, 120° and 150° steps altogether. The slipstream 
remains attached to the wall in all the cases. 
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60° step, Mach No.-3 

 

90° step, Mach No.-2.5 

Figure 4: Density Contours for Different step angles (60° & 90°) 

 

120° step, Mach No.-3 

 

150° step, Mach No.-3 

Figure 5: Density Contours for Different step angles (120° & 
150°) 
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At higher Mach numbers, the secondary shock is beginning to 
appear as visible one. 

With an obtuse angle, the slipstream doesn’t propagate further 
with increase in Mach number. The circulation or vortex 
strength is increased significantly. 

At Mach No.-3, the vortex almost touches the wedge tip. 
Secondary shock also becomes more prominent. 
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